The development of integrated analytical devices is crucial for advancing next-generation point-of-care platforms. Herein, we describe a facile synthesis of a strongly catalytic and durable Nitrogen-doped graphene oxide decorated platinum cobalt (NGO-PtCo) nanocomposite that is conjugated with target-specific DNA aptamer (i-e. MUC1) and grown on carbon fiber. Benefitting from the combined features of the high electrochemical surface area of N-doped GO, high capacitance and stabilization by Co, and high kinetic performance by Pt, a robust, multifunctional, and flexible nanotransducer surface was created. The designed platform was applied for the specific detection of a blood-based oncomarker, CA15-3. The electrochemical characterization proved that nanosurface provides a highly conductive and proficient immobilization support with a strong bio-affinity towards MUC1 aptamer. The specific interaction between CA15-3 and the aptamer alters the surface properties of the aptasensor and the electroactive signal probe generated a remarkable increase in signal intensity. The sensor exhibited a wide dynamic range of 5.0 × 10−2 -200 U mL−1, a low limit of detection (LOD) of 4.1 × 10−2 U mL−1, and good reproducibility. The analysis of spiked serum samples revealed outstanding recoveries of up to 100.03 %, by the proposed aptasensor. The aptasensor design opens new revelations in the reliable detection of tumor biomarkers for timely cancer diagnosis.