Introduction In stereotactic radiosurgery (SRS) for brain metastasis (BM), the target dose inhomogeneity remains highly variable among modalities, irradiation techniques, and facilities, which can affect tumor response during and after multi-fraction SRS. Volumetric-modulated arcs (VMAs) can provide a concentrically-layered steep dose increase inside a gross tumor volume (GTV) boundarycompared to dynamic conformal arcs. This study was conducted to review the optimal evaluation method for the internal GTV doses relevant to maximal response and local control, specifically to examine the significance of the doses 2 mm and 4 mm inside the GTV boundary in VMA-based SRS. Materials and methods This was a planning study for the clinical scenario of a single BM and targeted 25 GTVs of >0.50 cc, including eight spherical models with diameters of 10-45 mm and 17 clinical BMs (GTV: 0.72-44.33 cc). SRS plans were generated for each GTV using VMA with a 5-mm leaf-width multileaf collimator and the optimization that prioritized the steepness of the dose gradient outside the GTV boundary without any internal dose constraints. The dose prescription and evaluation were based on the GTV D V-0.01 cc, a minimum dose of GTV minus 0.01 cc. Two planning systems were compared for the GTV - 2 mm and GTV - 4 mm structures that were generated by equally reducing 2 mm and 4 mm from the GTV surface. The D eIIVs, a minimum dose of the irradiated isodose volume equivalent to the GTV - 2 mm and GTV - 4 mm, were compared to other common metrics. Results The GTV - 2 mm and GTV - 4 mm volumes differed significantly between the systems. In the spherical GTVs, the irradiated isodose surfaces of GTV D 80% and D 50% corresponded to 0.4-1.6 mm (<2 mm) and 1.0-4.6 mm inside the GTV boundary, respectively. In the 25 GTVs, the GTV - 2 mm coverage with the D eIIV varied from 83.7% to 98.2% (95-98% in 68% of the cases), while the GTV coverage with the GTV - 2 mm D eIIV was 20.2-75.9%. In the 23 GTVs of ≥1.26 cc, the GTV coverage with the GTV - 4 mm D eIIVvaried from 1.9% to 55.6% (<50% in 87% of the cases). No significant difference was observed between the GTV D 50% and the GTV - 2 mm D eIIV, while the GTV - 4 mm D eIIV was significantly higher than the GTV D 50%. No significant correlations were observed between the GTV D 50% and the D eIIVs of the GTV - 2 mm and GTV - 4 mm. Conclusions The doses 2 mm and 4 mm inside a GTV have low correlations with the GTV D 50% and may be more relevant tomaximal response and local control for SRS of BM. The D eIIVinstead of the minimum dose of a fixed % coverage (e.g. D 98%) is suitable for reporting the doses 2 mm and 4 mm inside the GTV boundary in terms of avoiding the over- or under-coverage, with consideration tosubstantial variability inminus margin addition functions among planning systems. In VMA-based SRS with a steep dose gradient, the doses 2-4 mm inside a GTV decrease significantly as the GTV increases, which can attenuate the excessive dose exposure to the surrounding brain in a large BM due to the GTV shrinkage during multi-fraction SRS.
Read full abstract