The tiltrotor blades, or proprotor, act as a rotor in the helicopter mode and a propeller in the airplane mode. The helicopter mode generally requires relatively a low built-in twist angle, whereas in the airplane mode, a high built-in twist is desired. Meeting these rather conflicting requirements make the tiltrotor design a challenging task. This paper explores an optimal design of a variable-twist proprotor that changes the built-in twist in an adaptive manner by using the shape memory alloy hybrid composite (SMAHC). The optimum design problem attempts to find the cross-section internal layout that maximizes the twist actuation of the variable-twist proprotor while satisfying a series of design constraints. An optimum design framework is constructed in the current work by combining various analysis and design tools, such as an active composite cross-sectional analysis, a nonlinear flexible multibody dynamics analysis, a 3-D strain analysis, and a gradient-based optimizer. The MATLAB is used to integrate and synthesize the individual tools. A static tip twist is chosen as an objective function that should be maximized for the best performance. The optimum results exhibit that the twist actuation of the variable-twist proprotor can be maximized while satisfying all the prescribed design constraints.