To address the challenges of multi-energy coupling decision-making caused by the complex interactions and significant conflicts of interest among multiple entities in integrated energy systems, an energy management strategy for integrated energy systems with electricity, heat, and hydrogen multi-energy storage is proposed. First, based on the coupling relationship of electricity, heat, and hydrogen multi-energy flows, the architecture of the integrated energy system is designed, and the mathematical model of the main components of the system is established. Second, evaluation indexes in three dimensions, including energy storage device life, load satisfaction rate, and new energy utilization rate, are designed to fully characterize the economy, stability, and environmental protection of the system during operation. Then, an improved radar chart model considering multi-evaluation index comprehensive optimization is established, and an adaptability function is constructed based on the sector area and perimeter. Combined with the operation requirements of the electric–thermal–hydrogen integrated energy system, constraint conditions are determined. Finally, the effectiveness and adaptability of the strategy are verified by examples. The proposed strategy can obtain the optimal decision instructions under different operation objectives by changing the weight of evaluation indexes, while avoiding the huge decision space and secondary optimization problems caused by multiple non-inferior solutions in conventional optimization, and has multi-scenario adaptability.
Read full abstract