Sentence regression is a type of extractive summarization that achieves state-of-the-art performance and is commonly used in practical systems. The most challenging task within the sentence regression framework is to identify discriminative features to represent each sentence. In this article, we study the use of sentence relations, e.g., Contextual Sentence Relations (CSR), Title Sentence Relations (TSR), and Query Sentence Relations (QSR), so as to improve the performance of sentence regression. CSR, TSR, and QSR refer to the relations between a main body sentence and its local context, its document title, and a given query, respectively. We propose a deep neural network model, Sentence Relation-based Summarization (SRSum), that consists of five sub-models, PriorSum, CSRSum, TSRSum, QSRSum, and SFSum. PriorSum encodes the latent semantic meaning of a sentence using a bi-gram convolutional neural network. SFSum encodes the surface information of a sentence, e.g., sentence length, sentence position, and so on. CSRSum, TSRSum, and QSRSum are three sentence relation sub-models corresponding to CSR, TSR, and QSR, respectively. CSRSum evaluates the ability of each sentence to summarize its local contexts. Specifically, CSRSum applies a CSR-based word-level and sentence-level attention mechanism to simulate the context-aware reading of a human reader, where words and sentences that have anaphoric relations or local summarization abilities are easily remembered and paid attention to. TSRSum evaluates the semantic closeness of each sentence with respect to its title, which usually reflects the main ideas of a document. TSRSum applies a TSR-based attention mechanism to simulate people’s reading ability with the main idea (title) in mind. QSRSum evaluates the relevance of each sentence with given queries for the query-focused summarization. QSRSum applies a QSR-based attention mechanism to simulate the attentive reading of a human reader with some queries in mind. The mechanism can recognize which parts of the given queries are more likely answered by a sentence under consideration. Finally as a whole, SRSum automatically learns useful latent features by jointly learning representations of query sentences, content sentences, and title sentences as well as their relations. We conduct extensive experiments on six benchmark datasets, including generic multi-document summarization and query-focused multi-document summarization. On both tasks, SRSum achieves comparable or superior performance compared with state-of-the-art approaches in terms of multiple ROUGE metrics.