Abstract
In an Online Argumentation Platform, a great deal of speech messages are produced. To find similar speech texts and extract their common summary is of great significance for improving the efficiency of argumentation and promoting consensus building. In this article, a method of speech text analysis is proposed. Firstly, a heuristic clustering algorithm is used to cluster the speech texts and obtain similar text sets. Then, an improved TextRank algorithm is used to extract a multi-document summary, and the results of the summary are fed back to experts (i.e. participants). The method of multi-document summarization is based on TextRank, which takes into account the position of sentences in paragraphs, the weight of the key sentence, and the length of the sentence. Finally, a prototype system is developed to verify the validity of the method using the four evaluation parameters of recall rate, accuracy rate, F-measure, and user feedback. The experimental results show that the method has a good performance in the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Data Warehousing and Mining
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.