Optical Coherence Tomography (OCT) facilitates a comprehensive examination of macular edema and associated lesions. Manual delineation of retinal fluid is labor-intensive and error-prone, necessitating an automated diagnostic and therapeutic planning mechanism. Conventional supervised learning models are hindered by dataset limitations, while Transformer-based large vision models exhibit challenges in medical image segmentation, particularly in detecting small, subtle lesions in OCT images. This paper introduces the Multidimensional Directionality-Enhanced Retinal Fluid Segmentation framework (MD-DERFS), which reduces the limitations inherent in conventional supervised models by adapting a transformer-based large vision model for macular edema segmentation. The proposed MD-DERFS introduces a Multi-Dimensional Feature Re-Encoder Unit (MFU) to augment the model’s proficiency in recognizing specific textures and pathological features through directional prior extraction and an Edema Texture Mapping Unit (ETMU), a Cross-scale Directional Insight Network (CDIN) furnishes a holistic perspective spanning local to global details, mitigating the large vision model’s deficiencies in capturing localized feature information. Additionally, the framework is augmented by a Harmonic Minutiae Segmentation Equilibrium loss (LHMSE) that can address the challenges of data imbalance and annotation scarcity in macular edema datasets. Empirical validation on the MacuScan-8k dataset shows that MD-DERFS surpasses existing segmentation methodologies, demonstrating its efficacy in adapting large vision models for boundary-sensitive medical imaging tasks. The code is publicly available at https://github.com/IMOP-lab/MD-DERFS-Pytorch.git.
Read full abstract