The building and construction sector has a significant impact on the CO2 emissions and pollutants released into the atmosphere, which contribute to climate change. The EPDB Directive mandates the achievement of minimum energy class E for all residential buildings by 2030 and energy class D by 2033. Particularly, in Italy, about 86% of the existing building stock predates the enactment of any energy laws or regulations, making it imperative to apply the energy efficiency interventions. This paper provides a support decision tool for the identification of the standardized interventions in the building envelope, the air conditioning system, and domestic hot water production. This study is focused on a specific construction period class (1976–1990) in six different climatic zones. The methodological approach is based on a cataloguing phase and the definition of ante operam energy classes as well as on case study identification, energy requalification intervention identification, solution simulations, and cost estimation. By simulating the standardized interventions for each climatic zone, a range of possible combinations is identified. The most advantageous ones are determined based on a cost–benefit analysis considering the potential class jump achieved. The research result is a matrix of energy efficiency interventions that is applicable to each climatic zone and can be extended to the existing housing stock.