Abstract
The accumulation of pathologically misfolded tau is a feature shared by a group of neurodegenerative disorders collectively referred to as tauopathies. Alzheimer's disease (AD) is the most prevalent of these tauopathies. Immunohistochemical evaluation allows neuropathologists to visualize paired-helical filaments (PHFs)-tau pathological lesions, but this is possible only after death and only shows tau in the portion of brain sampled. Positron emission tomography (PET) imaging allows both the quantitative and qualitative analysis of pathology over the whole brain of a living subject. The ability to detect and quantify tau pathology in vivo using PET can aid in the early diagnosis of AD, provide a way to monitor disease progression, and determine the effectiveness of therapeutic interventions aimed at reducing tau pathology. Several tau-specific PET radiotracers are now available for research purposes, and one is approved for clinical use. This study aims to analyze, compare, and rank currently available tau PET radiotracers using the fuzzy preference ranking organization method for enrichment of evaluations (PROMETHEE), which is a multi-criteria decision-making (MCDM) tool. The evaluation is based on relatively weighted criteria, such as specificity, target binding affinity, brain uptake, brain penetration, and rates of adverse reactions. Based on the selected criteria and assigned weights, this study shows that a second-generation tau tracer, [18F]RO-948, may be the most favorable. This flexible method can be extended and updated to include new tracers, additional criteria, and modified weights to help researchers and clinicians select the optimal tau PET tracer for specific purposes. Additional work is needed to confirm these results, including a systematic approach to defining and weighting criteria and clinical validation of tracers in different diseases and patient populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.