Real-time modeling of regional troposphere has attracted considerable research attention in the current GNSS field, and its modeling products play an important role in global navigation satellite system (GNSS) real-time precise positioning and real-time inversion of atmospheric water vapor. Multicore support vector machine (MS) based on genetic optimization algorithm, single-core support vector machine (SVM), four-parameter method (FP), neural network method (BP), and root mean square fusion method (SUM) are used for real-time and final zenith tropospheric delay (ZTD) modeling of Hong Kong CORS network in this study. Real-time ZTD modeling experiment results for five consecutive days showed that the average deviation (bias) and root mean square (RMS) of FP, BP, SVM, and SUM reduced by 48.25%, 54.46%, 41.82%, and 51.82% and 43.16%, 48.46%, 30.09%, and 33.86%, respectively, compared with MS. The final ZTD modeling experiment results showed that the bias and RMS of FP, BP, SVM, and SUM reduced by 3.80%, 49.78%, 25.71%, and 49.35% and 43.16%, 48.46%, 30.09%, and 33.86%, respectively, compared with MS. Accuracy of the five methods generally reaches millimeter level in most of the time periods. MS demonstrates higher precision and stability in the modeling of stations with an elevation at the average level of the survey area and higher elevation than that of other models. MS, SVM, and SUM exhibit higher precision and stability in the modeling of the station with an elevation at the average level of the survey area than FP. Meanwhile, real-time modeling error distribution of the five methods is significantly better than the final modeling. Standard deviation and average real-time modeling improved by 43.19% and 24.04%, respectively.