We study a two-component Novikov system, which is integrable and can be viewed as a two-component generalization of the Novikov equation with cubic nonlinearity. The primary goal of this paper is to understand how multi-component equations, nonlinear dispersive terms and other nonlinear terms affect the dispersive dynamics and the structure of the peaked solitons. We establish the local well-posedness of the Cauchy problem in Besov spaces B with 1 ⩽ p, r ⩽ + ∞, s > max{1 + 1/p, 3/2} and Sobolev spaces Hs(ℝ) with s > 3/2, and the method is based on the estimates for transport equations and new invariant properties of the system. Furthermore, the blow-up and wave-breaking phenomena of solutions to the Cauchy problem are studied. A blow-up criterion on solutions of the Cauchy problem is demonstrated. In addition, we show that this system admits single-peaked solitons and multi-peaked solitons on the whole line, and the single-peaked solitons on the circle, which are the weak solutions in both senses of the usual weak form and the weak Lax-pair form of the system.
Read full abstract