For an accurate imaging of ground penetrating radar data the polarization characteristics of the propagating electromagnetic (EM) wavefield and wave amplitude variations with antenna pattern orientation must be taken into account. For objects that show some directionality feature and cylindrical shape any misalignment between transmitter and target can strongly modify the polarization state of the backscattered wavefield, thus conditioning the detection capability of the system. Hints on the depolarization can be used to design the optimal GPR antenna survey to avoid omissions and pitfalls during data processing. This research addresses the issue of elongated target detection through a multi azimuth (or multi polarization) approach based on the combination of mutually orthogonal GPR data. Results from the analysis of the formal scattering problem demonstrate how this strategy can reach a scalar formulation of the scattering matrix and achieve a rotational invariant quantity. The effectiveness of the algorithm is then evaluated with a detailed field example showing results closely proximal to those obtained under the optimal alignment condition: detection is significantly improved and the risk of target missing is reduced.
Read full abstract