This study investigates the effects of blockchain technology scalability limitations on the performance of Blockchain-Based Shared Manufacturing (BBSM), an innovative smart-manufacturing paradigm aimed at enhancing the utilization of global manufacturing resources via peer-to-peer (P2P) collaboration of self-organized manufacturing assets. Despite the prevalence of research highlighting blockchain technology’s scalability limitations as the main barrier for adoption, few studies have explored their effects on the operation of blockchain-based systems. The primary goal of the presented research work is to explore the implications of blockchain technology scalability limitations on the BBSM system’s performance and user behavior. To obtain realistic behavior, an experiment is conducted using an online game played by human participants. Analysis of the players’ strategy is used for implementation of a multi-agent simulation model, which is then employed to assess the influence of varying blockchain network configurations on the BBSM concept’s performance. Preliminary experimental findings reveal that a congested blockchain network leads to increased transaction costs and reduced service prices, consequently devaluing the manufacturing role in the BBSM system and causing underutilization of existing maximum production capacities. Moreover, allocating funds to financial activities rather than manufacturing activities yields superior outcomes for system users. Simulation results indicate that the BBSM system’s response to alterations in blockchain network throughput is contingent upon the production function. The findings of this study reveal that the scalability limitations of blockchain technology impair the performance of the BBSM system and affect user behavior in the system, underscoring the necessity for future research to concentrate on incorporating scalable solutions within blockchain-based manufacturing systems.