The model of the interaction between Na and alanine at the mucosal border of rabbit ileum has been tested further by examining the efflux of alanine from the cells toward the mucosal solution. Alanine efflux shows a tendency toward saturation as cellular alanine concentration increases and is influenced by cellular Na concentration. A decrease in cell Na concentration causes an increase in the apparent Michaelis constant with little change in maximal efflux rate. Studies on strips of mucosa treated with ouabain or cyanide showed that the direction of net alanine transfer between the cells and the medium is determined by the direction of the Na concentration difference. The cells extrude alanine against a concentration difference when cell [Na] exceeds medium [Na] and accumulate alanine when cell [Na] is less than medium [Na]. The observations are consistent with the model previously suggested involving a transport site that combines with and translocates both Na and alanine, and with the concept that the Na concentration difference between mucosal solution and cytoplasm provides at least part of the energy for active transport of alanine.
Read full abstract