Atomic force microscopy (AFM) was used to examine the buccal cell surface in order to image the presence of adsorbed bioadhesive polymers identified from previous work. Isotonic saline solution (5 ml) containing either polycarbophil (pH 7.6), chitosan (pH 4.5) or hydroxypropyl methylcellulose (pH 7.6) (0.5% w/v) was exposed to freshly collected buccal cells (ca. 48×10 4 cells/test) for 15 min at 30°C. The cells were then rinsed with a small volume of double distilled water, allowed to air-dry on a freshy cleaved mica surface and imaged using contact mode AFM. Untreated cells showed relatively smooth surface characteristics, with many small ‘crater-like’ pits and indentations spread over cell surfaces. Cells that had been treated with all the investigated polymers appeared to have lost the crater and indentation characteristic and gained a higher surface roughness. These results suggest that polymer chains had adsorbed onto the cell surfaces. Quantitative image analysis of cell topography showed significant increases ( P<0.05) in arithmetic roughness average ( R a) for all the investigated polymer treated cells surfaces with respect to untreated control specimens. The changes in surface topography indicate the presence of adsorbed polymer, confirming previous work. This study demonstrates the suitability of AFM as a powerful and sensitive technique for detecting and imaging bioadhesive polymers present on mucosal cell surfaces.
Read full abstract