The Mucin1 (MUC1) protein, involved in cytoprotective and signaling pathways, is abnormally elevated in various cancers, making it a key cancer indicator. Exosomes, which reflect the status of their originating cells, offer potential for cancer diagnosis. Thus, developing a method to detect MUC1-positive exosomes is crucial for the early diagnosis of certain cancers. In this study, we developed a highly sensitive, specific, and simple UV–visible signal amplification method to detect MUC1-positive exosomes using terminal deoxynucleotidyl transferase (TdT). Initially, exosomes were captured on magnetic beads using a CD63 aptamer(apt). The Primer-AuNPs-MUC1 apt complex which we synthesized by low pH loading method was then attached MUC1 proteins on the surface of the exosomes to create a sandwich structure. TdT catalyzed the extension of Biotin-dATP at the 3′ end of the primer, introducing multiple biotin sites into the sandwich structure. These sites subsequently bound multiple streptavidin-horseradish peroxidase (streptavidin-HRP), which catalyzed the oxidative color change of the substrate, which can be detected by colorimetric method. This method can detect A549 exosomes in the range of 1.4E+6 to 4.2E+8 particles/mL and shows high specificity for cell lines with different MUC1 expression. Additionally, it successfully distinguished cholangiocarcinoma (CCA) patients (n=11) from healthy individuals (n=7) in clinical serum assays, demonstrating good performance in real sample detection.
Read full abstract