We explored whether the association between vitamin B2 and colorectal cancer (CRC) risk could be modified by the MTRR rs1801394 and MTR rs1805087 genetic polymorphisms and examined whether the interaction effects are sex-specific. We performed a case-control study involving 1,420 CRC patients and 2,840 controls from the Korea National Cancer Center. Dietary vitamin B2 intake was assessed using a semiquantitative food frequency questionnaire, and the association with CRC was evaluated. Genotyping was performed using an Illumina MEGA-Expanded Array. For gene-nutrient interaction analysis, pre-matched (1,081 patients and 2,025 controls) and matched (1,081 patients and 1,081 controls) subsets were included. Unconditional and conditional logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). A higher intake of vitamin B2 was associated with a significantly lower CRC risk (OR, 0.65; 95% CI, 0.51 to 0.82; p<0.001). Carriers of at least 1 minor allele of MTRR rs1801394 showed a significantly higher CRC risk (OR, 1.43; 95% CI, 1.12 to 1.83). Males homozygous for the major allele (A) of MTRR rs1801394 and who had a higher intake of vitamin B2 had a significantly lower CRC risk (OR, 0.31; 95% CI, 0.18 to 0.54; p-interaction=0.02). In MTR rs1805087, males homozygous for the major allele (A) and who had a higher vitamin B2 intake had a significantly lower CRC risk (OR, 0.38; 95% CI, 0.25 to 0.60; p-interaction<0.001). The MTRR rs1801394 and MTR rs1805087 genetic polymorphisms may modify the association between vitamin B2 and CRC risk, particularly in males. However, further studies are warranted to confirm these interaction results.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access