The foundation of all biological processes is the network of diverse and dynamic protein interactions with other molecules in cells known as the interactome. Understanding the interactome is crucial for elucidating molecular mechanisms but has been a longstanding challenge. Recent developments in mass spectrometry (MS)-based techniques, including affinity purification, proximity labeling, cross-linking, and co-fractionation mass spectrometry (MS), have significantly enhanced our abilities to study the interactome. They do so by identifying and quantifying protein interactions, yielding profound insights into protein organizations and functions. This review summarizes recent advances in MS-based interactomics, focusing on the development of techniques that capture protein-protein, protein-metabolite, and protein-nucleic acid interactions. Additionally, we discuss how integrated MS-based approaches have been applied to diverse biological samples, focusing on significant discoveries that have leveraged our understanding of cellular functions. Finally, we highlight state-of-the-art bioinformatic approaches for predictions of interactome and complex modeling, as well as strategies for combining experimental interactome data with computation methods, thereby enhancing the ability of MS-based techniques to identify protein interactomes. Indeed, advances in MS technologies and their integrations with computational biology provide new directions and avenues for interactome research, leveraging new insights into mechanisms that govern the molecular architecture of living cells and, thereby, our comprehension of biological processes.
Read full abstract