Abstract

Statistical analysis and modeling of mass spectrometry (MS) data have a long and rich history with several modern MS-based applications using statistical and chemometric methods. Recently, machine learning (ML) has experienced a renaissance due to advents in computational hardware and the development of new algorithms for artificial neural networks (ANN) and deep learning architectures. Moreover, recent successes of new ANN and deep learning architectures in several areas of science, engineering, and society have further strengthened the ML field. Importantly, modern ML methods and architectures have enabled new approaches for tasks related to MS that are now widely adopted in several popular MS-based subdisciplines, such as mass spectrometry imaging and proteomics. Herein, we aim to provide an introductory summary of the practical aspects of ML methodology relevant to MS. Additionally, we seek to provide an up-to-date review of the most recent developments in ML integration with MS-based techniques while also providing critical insights into the future direction of the field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.