The current study aimed to evaluate the changes in lipid accumulation and oxidative status in pigeon crops during different breeding stages. Forty-two pairs of adult pigeons were randomly assigned to 7 groups. Lipid droplet accumulation in pigeon crops was visualized by using oil red O staining from d 17 of incubation (I17) to d 7 of chick rearing (R7). Transmission electron microscopy analysis showed swollen mitochondria with disintegration of cristae and typical characteristics of endoplasmic reticulum stress in crop tissues at R1 compared with those at I4. During the peak of pigeon milk formation, the concentrations of reactive oxygen species, and oxidative damage markers (advanced oxidation protein products, 8-hydroxy-2 deoxyguanosine, and malondialdehyde) and the enzyme activities of total superoxide dismutase and glutathione peroxidase were all elevated significantly (P < 0.05). The protein concentration of B-cell lymphoma-2 associated X in crop tissues was significantly higher at R1, while the level of B-cell lymphoma-2 protein in males was the highest at I4 (P < 0.05). The ratio of B-cell lymphoma-2 associated X protein (Bax)/B-cell lymphoma-2 (Bcl-2) in both male and female crops peaked at R1 (P < 0.05). Gene expression of the key enzymes involved in mitochondrial and peroxisomal fatty acid β-oxidation was investigated in crops. In males, the gene expression of carnitine palmitoyltransferase 1a peaked at R15, and that of carnitine palmitoyltransferase 2 increased significantly from R1 to R15 (P < 0.05). The mRNA abundance of long chain 3-hydroxyacyl-CoA dehydrogenase increased to the maximum value at R1 and I17 in males and females, respectively. From I17 to R7, the mRNA levels of acyl-CoA oxidase 1 and acyl-CoA oxidase 2 were decreased in pigeon crops (P < 0.05). Conclusively, lipid droplet accumulation was found in male and female pigeon crops from the end of incubation to the early stage of chick rearing. Although antioxidant defence and mitochondrial fatty acid β-oxidation were both mobilized, oxidative stress in crop tissues still occurred during the peak of milk formation.
Read full abstract