IntroductionTransforming growth factor (TGF)-β and interleukin (IL)-13 play a crucial role in the pathogenesis of systemic sclerosis (SSc), partly through activation of collagen production that leads to fibrosis. The aim of the present study was to determine whether TFG-β alters IL-13 production in T lymphocytes from patients with SSc from that seen in those of healthy donors.MethodsIL-13 mRNA and protein synthesis under TFG-β exposure was measured in circulating T lymphocytes from healthy donors and patients with SSc and also in the Jurkat Th2 T-cell line, using quantitative real-time PCR and fluorescence-activated cell sorting analysis, respectively. The involvement of Smad and GATA-3 transcription factors was assessed by using specific inhibitors and small interfering RNA, and the binding capacity of GATA-3 to the IL-13 gene promoter was evaluated by chromatin immunoprecipitation assay.ResultsTGF-β induced a significant decrease in IL-13 mRNA and protein levels in lymphocytes from healthy donors (mean [±SD] inhibition of 30 % ± 10 % and 20 % ± 7 %, respectively; p < 0.05). In contrast, TGF-β promoted a significant increase in IL-13 mRNA levels and IL-13 synthesis by CD4+ and CD8+ T-cell subtypes from patients with SSc, with respective increases of 2.4 ± 0.3-fold, 1.6 ± 0.05-fold and 2.7 ± 0.02-fold. The involvement of the Smad signaling pathway and upregulation of GATA-3 binding capacity on the IL-13 promoter in lymphocytes from patients with SSc contributed to the effect of TGF-β on IL-13 production.ConclusionsThese results demonstrate that TGF-β upregulates IL-13 synthesis through GATA-3 expression in the T lymphocytes of patients with SSc, confirming that the GATA-3 transcription factor can be regarded as a novel therapeutic target in patients with SSc.
Read full abstract