A novel hexasodium disphosphopentamolybdate hydrate, Na6[P2Mo5O23]x7H2O, has been identified using X-ray powder diffraction, 1H, 23Na, and 31P magic-angle spinning (MAS) NMR, and 23Na multiple-quantum (MQ) MAS NMR. Powder XRD reveals that the hydrate belongs to the triclinic spacegroup P1 with cell dimensions a = 10.090(3) A, b = 15.448(5) A, c = 8.460(4) A, alpha = 101.45(6) degrees, beta = 104.09(2) degrees, gamma = 90.71(5) degrees, and Z = 2. The number of water molecules of crystallization has been determined on the basis of a quantitative evaluation of the 1H MAS NMR spectrum, the crystallographic unit cell volume, and a hydrogen content analysis. The 23Na MQMAS NMR spectra of Na6[P2Mo5O23]x7H2O, obtained at three different magnetic fields, clearly resolve resonances from six different sodium sites and allow a determination of the second-order quadrupolar effect parameters and isotropic chemical shifts for the individual resonances. These data are used to determine the quadrupole coupling parameters (CQ and eta Q) from simulations of the complex line shapes of the central transitions, observed in 23Na MAS NMR spectra at the three magnetic fields. This analysis illustrates the advantages of combining MQMAS and MAS NMR at moderate and high magnetic fields for a precise determination of quadrupole coupling parameters and isotropic chemical shifts for multiple sodium sites in inorganic systems. 31P MAS NMR demonstrates the presence of two distinct P sites in the asymmetric unit of Na6[P2Mo5O23].7H2O while the 31P chemical shielding anisotropy parameters, determined for this hydrate and for Na6[P2Mo5O23]x13H2O, show that these two hydrates can easily be distinguished using 31P MAS NMR.
Read full abstract