Applying 4K, (Ultra HD) Real-time video streaming via the internet network, with low bitrate and low latency, is the challenge this paper addresses. Compression technology and transfer links are the important elements that influence video quality. So, to deliver video over the internet or another fixed capacity medium, it is essential to compress the video to more controllable bitrates (customarily in the 1-20 Mbps range). In this study, the video quality is examined using the H.265/HEVC compression standard, and the relationship between quality of video and bitrate flow is investigated using various constant rate factors, GOP patterns, quantization parameters, RC-lookahead, and other types of video motion sequences. The ultra-high-definition video source is used, down sampled and encoded at multiple resolutions of (3480x2160), (1920x1080), (1280x720), (704x576), (352x288), and (176x144). To determine the best H265 feature configuration for each resolution experiments were conducted that resulted in a PSNR of 36 dB at the specified bitrate. The resolution is selected by delivery (encoder resource) based on the end-user application. While video streaming adapted to the available bandwidth is achieved via embedding a controller with MPEG DASH protocol at the client-side. Video streaming Adaptation methods allow the delivery of content that is encoded at different representations of video quality and bitrate and then dividing each representation into chunks of time. Through this paper, we propose to utilize HTTP/2 as a protocol to achieve low latency video streaming focusing on live streaming video avoiding the problem of HTTP/1.
Read full abstract