In this article, we propose a fault tolerant control for multiple-input multiple-output (MIMO) nonlinear systems via model predictive control. The MIMO nonlinear systems are approximated by MIMO ARX-Laguerre multiple models. The latter is obtained by expanding a discrete-time MIMO ARX multiple model parameters on Laguerre orthonormal bases. The resulting model ensures an efficient complexity reduction with respect to the classical MIMO ARX multiple models. This parametric complexity reduction still subjects to an optimal choice of the Laguerre poles defining Laguerre bases. The parameter and structure identifications of the MIMO ARX-Laguerre multiple models are achieved by the recursive method and a metaheuristic algorithm, respectively. The proposed model is built from the system input/output observations and is used to synthesize a MIMO nonlinear fault tolerant control algorithm via MPC. So, we develop a fault detection and isolation (FDI) scheme based on the proposed model. The scheme of the fault detection is applied at every step of MPC control calculation, where we determine the actuator faults and we use it in the MPC optimization problem to determine the new control with respect to the actuator faults. The proposed strategy is tested on numerical simulation and validated on the real system.
Read full abstract