The components (H 3PO 4, HNO 3, CH 3COOH and water) in an etchant solution have been accurately measured in an on-line manner using near-infrared (NIR) spectroscopy by directly illuminating NIR radiation through a Teflon line. In particular, the spectral features according to the change of H 3PO 4 or HNO 3 concentrations were not mainly from NIR absorption themselves, but from the perturbation (or displacement) of water bands; therefore, the resulting spectral variations were quite similar to each other. Consequently partial least squares (PLS) prediction selectivity among the components should be the most critical issue for continuous on-line compositional monitoring by NIR spectroscopy. To improve selectivity of the calibration model, we have optimized the calibration models by finding selective spectral ranges with the use of moving window PLS. Using the optimized PLS models for each component, the resulting prediction accuracies were substantially improved. Furthermore, on-line prediction selectivity was evaluated by spiking individual pure components step by step and examining the resulting prediction trends. When optimized PLS models were used, each concentration was selectively and sensitively varied at each spike; meanwhile, when whole or non-optimized ranges were used for PLS, the prediction selectivity was greatly degraded. This study verifies that the selection of an optimal spectral range for PLS is the most important factor to make Teflon-based NIR measurements successful for on-line and real-time monitoring of etching solutions.
Read full abstract