The interpolating moving least-squares (IMLS) approach for constructing potential energy surfaces has been developed and employed in standard classical trajectory simulations in the past few years. We extend the approach to the tunneling regime by combining the IMLS fitting method and the semiclassical scheme that incorporates tunneling into classical trajectory calculations. Dynamics of cis-trans isomerization in nitrous acid (HONO) is studied as a test case to investigate various aspects of the approach such as the strategy for growing the surface, the basis set employed, the scaling of the IMLS fits, and the accuracy of the surface required for obtaining converged rate coefficients. The validity of the approach is demonstrated through comparison with other semiclassical and quantum mechanical studies on HONO.
Read full abstract