Duchenne muscular dystrophy (DMD) is the most severe form of muscular dystrophy that is caused by lack of dystrophin, a critical structural protein in skeletal muscle. DMD treatments, and quantitative biomarkers to assess the efficacy of potential treatments, are urgently needed. Previous evidence has shown that titin, a muscle cell protein, is increased in the urine of patients with DMD, suggesting its usefulness as a DMD biomarker. Here, we demonstrated that the elevated titin in urine is directly associated with the lack of dystrophin and urine titin responses to drug treatment. We performed a drug intervention study using mdx mice, a DMD mouse model. We showed that mdx mice, which lack dystrophin due to a mutation in exon 23 of the Dmd gene, have elevated urine titin. Treatment with an exon skipper that targets exon 23 rescued muscle dystrophin level and dramatically decreased urine titin in mdx mice and correlates with dystrophin expression. We also demonstrated that titin levels were significantly increased in the urine of patients with DMD. This suggests that elevated urine titin level might be a hallmark of DMD and a useful pharmacodynamic marker for therapies designed to restore dystrophin levels.
Read full abstract