Ethnopharmacological relevanceVeronica ciliata Fisch. existed in various Tibetan medicine prescriptions, which was recorded to treat liver diseases in the Tibetan medicine roll of Chinese materia medica. Hypothesis/purposeThe current study aimed to examine the effect of active constituents from V.ciliata relieving oxidative stress-mediated liver injury and clarify the underlying mechanism. Materials and methodstert-Butyl hydroperoxide (BHP) induced liver injury in mice model was established to evaluate the hepatoprotective effect of ethyl acetate extract of V. ciliata (EAFVC). Serum and liver indicators, as well as the histopathological change of liver were examined. Next, the constituents of EAFVC were separated and characterized by high-speed countercurrent chromatography (HSCCC) and Ultra performance liquid chromatography-mass spectrometer (UPLC-MS), respectively. Based on the above, the antioxidant activity of EAFVC and two fractions was evaluated using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2, 2'-azino-bis (3-ethylbenzothiazoli- ne-6-sulfonic acid) (ABTS) free radical scavenging assays. The hepatoprotective activity of EAFVC and its fractions/compounds attenuating ethanol-induced hepatocyte damage in BRL-3A cells was evaluated using the MTT method. The effect of the fraction and compounds with the strongest protective activity on ethanol-induced cytotoxicity, reactive oxygen species (ROS) accumulation, and glutathione (GSH) depletion was investigated. mRNA expression of nuclear factor-E2-related factor 2 (Nrf2) and nuclear factor of κB (NF-κB), as well as their downstream target genes, was determined by RT-qPCR. Finally, the potential mechanism of fraction 1 and luteolin on the AMPK/p62/Nrf2 signal pathway was studied using western blotting. ResultsFirstly, EAFVC could relieve liver impairment induced by t-BHP in mice. Next, fraction 1 enriched with polyphenolic compounds and luteolin derived from EAFVC were screened to yield the highest hepatoprotective activity against ethanol-induced hepatocyte damage. Further study demonstrated that fraction 1 and luteolin relieved BRL-3A cells damage by decreasing the aspartate aminotransferase (AST), alanine transaminase (ALT) and lactate dehydrogenase (LDH) activities, ROS accumulation, as well as the depletion of GSH. Also, we determined that fraction 1 and luteolin suppressed inflammation and apoptosis of BRL-3A cells. The mechanistic studies indicated that fraction 1 could attenuate oxidative stress, inflammation, and apoptosis by activating AMPK phosphorylation, which promotes autophagy associated protein expression (LC3-B, Beclin1 and p62) as well as promote phosphorylation of p62 -dependent autophagic degradation of Keap1, to induce Nrf2 dissociation from Keap1 and translocate to nuclear. Nrf2 in the nuclear activate cytoprotective related genes to exert hepatoprotective function. Finally, we found that luteolin activated the protein expression of p-AMPK, p-p62, p62, Nrf2, and its downstream target genes. ConclusionsThis study clarified that fraction 1 enriched phenolic compounds could attenuate ethanol-induced liver injury in BRL-3A cells via activating AMPK/p62/Nrf2 pathway. Luteolin could serve as the major bioactive component in the therapeutic effect of fraction 1. These active constituents in V. ciliata could be used as the potential drugs targeted activation of AMPK or p62 for relieving oxidative stress-mediated liver disorders.