Amelogenesis, the process of enamel formation, is tightly regulated and essential for producing the tooth enamel that protects teeth from decay and wear. Disruptions in amelogenesis can result in amelogenesis imperfecta, a group of genetic conditions characterized by defective enamel, including enamel hypoplasia, marked by thin or underdeveloped enamel. Mutations in the KMT2D (MLL4) gene, which encodes a histone H3-lysine 4-methyltransferase, are associated with Kabuki syndrome, a developmental disorder that can involve dental anomalies such as enamel hypoplasia. However, the specific role of KMT2D in amelogenesis remains poorly understood. To address this gap, we generated a conditional knockout mouse model with ectoderm-specific deletion of Kmt2d (Krt14-Cre;Kmt2d fl/fl , or Kmt2d-cKO) and characterized the resulting enamel defects using gross, radiographic, histological, cellular, and molecular analyses. Micro-computed tomography and scanning electron microscopy revealed that adult Kmt2d-cKO mice exhibited 100% penetrant amelogenesis imperfecta, characterized by hypoplastic and hypomineralized enamel, partially phenocopying human Kabuki syndrome. Additionally, Kmt2d-cKO neonates developed molar tooth germs with subtle cusp shape alterations and mild delays in ameloblast differentiation at birth. RNA-seq analysis of the first molar tooth germ at birth revealed that 33.7% of known amelogenesis-related genes were significantly downregulated in the Kmt2d-cKO teeth. Integration with KMT2D CUT&RUN-seq results identified 8 overlapping genes directly targeted by KMT2D. Re-analysis of a single-cell RNA-seq dataset in the developing mouse incisors revealed distinct roles for these genes in KMT2D-regulated differentiation across various cell subtypes within the dental epithelium. Among these genes, Satb1 and Sp6 are likely direct targets involved in the differentiation of pre-ameloblasts into ameloblasts. Taken together, we propose that KMT2D plays a crucial role in amelogenesis by directly activating key genes involved in ameloblast differentiation, offering insights into the molecular basis of enamel development and related dental pathologies.
Read full abstract