Direct Torque Control (DTC) of Induction Motors (IMs) is popular in motor drive applications because of its robust and simple control structure. The IM winding can be controlled on both sides using dual inverter technique which more effective for Electric Vehicle (EV) with a greater number of voltage vectors. However, the battery performance of the dual inverter will deteriorate unevenly on both sides, resulting in fluctuating voltages for the EV system. This will lead to the generation of distorted stator currents and a significant droop in the stator flux, which in turn can increase the total harmonic distortion (THD) in the system. Additionally, the performance of torque may not be able to regulate effectively. This paper examines the effect of unstable voltage on voltage vector mapping performance with tilted angles and proposes new sector definitions based on voltage ratio conditions. Moreover, the proposed sector for each predefined voltage ratio is tested under three-speed conditions. The proposed technique effectiveness is validated through hardware experiments using a dSPACE 1104 controller and retuning the stator current for proper waveform. This approach improves the stator current waveform, improves stator flux droop, enhances torque regulation and minimizes the THD in the DTC system.