Biological motion is salient to the human visual and motor systems and may be intrinsic to the perception of animacy. Evidence for the salience of visual stimuli moving with trajectories consistent with biological motion comes from studies showing that such stimuli can trigger shifts of attention in the direction of that motion. The present study was conducted to determine whether or not top-down beliefs about animacy can modify the salience of a nonbiologically moving stimulus to the visuomotor system. A nonpredictive cuing task was used in which a white dot moved from a central location toward a left- or right-sided target placeholder. The target randomly appeared at either location 200, 600, or 1,300 ms after the motion onset. Five groups of participants experienced different stimulus conditions: (1) biological motion, (2) inverted biological motion, (3) nonbiological motion, (4) animacy belief (paired with nonbiological motion), and (5) computer-generated belief (paired with nonbiological motion). Analysis of response times revealed that the motion in the biological motion and animacy belief groups, but not in the inverted and nonbiological motion groups, affected processing of the target information. These findings indicate that biological motion is salient to the visual system and that top-down beliefs regarding the animacy of the stimulus can tune the visual and motor systems to increase the salience of nonbiological motion.