During the operation of a permanent magnet synchronous motor, limitations imposed by digital chips inevitably result in certain delays. Additionally, external environmental factors introduce variations in motor parameters. This study aims to comprehensively analyze these issues. Firstly, the control delay and disturbances caused by motor parameter changes are transformed into current disturbances using a uniform approach. Secondly, various sliding mode model predictive controllers are designed to effectively suppress the current disturbances arising from aforementioned reasons. Moreover, considering controller implementation aspects, this paper thoroughly discusses the influence of core controller parameters on current disturbances and their adaptability towards different parameter mismatches. Furthermore, extensive examination is conducted on global stability conditions for controller realization. Finally, experimental results validate that the proposed methods successfully optimize current disturbances originating from aforementioned causes.