Abstract

To ensure the high-quality output performance of the five-phase fault-tolerant permanent magnet synchronous motor (FTPMSM) drive system under normal and open-circuit faults and achieve the minimal reconfiguration of the FTPMSM control drive system under various open-circuit faults, in this paper, a fault-tolerant field-oriented control (FOC) strategy based on disturbance adaption is proposed. The speed-loop and current-loop steady-healthy controllers are designed to effectively suppress the torque ripples caused by open-circuit faults and improve the robustness of the drive system to load disturbance and motor parameter variation under fault operation. Moreover, the additional zero-sequence current controller can be omitted. In addition, the modified reduced-order coordinate transformation matrices are proposed to weaken the influence of oscillating neutral. Finally, the fault-tolerant FOC system of the FTPMSM is established, and its experiment is conducted. The experimental results verify the feasibility and effectiveness of the proposed control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.