Background: Motor neuron disease or amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective death of motor neurons in the spinal cord as well as motor cortex. Recently, vascular endothelial growth factor (VEGF) has been identified as a neurotrophic factor in animal models of familial ALS and other neurological diseases. Objective: The present study was designed to investigate the neuroprotective role of VEGF in the more prevalent sporadic form of ALS. Methods: We studied the effect of VEGF on the NSC-34 cell line exposed to cerebrospinal fluid (CSF) from sporadic ALS patients (ALS-CSF) in terms of lactate dehydrogenase (LDH) assay as well as choline acetyltransferase (ChAT) and phosphorylated neurofilament expression by immunocytochemistry and confocal microscopy. NSC-34 cells were exposed to CSF from patients with definite ALS and compared to controls. LDH activity was assessed in the growth media, prior to and 24 h after the addition of VEGF to the cells. At similar time points, the cells were fixed and processed for immunocytochemistry to evaluate ChAT and phosphorylated neurofilament expression. Results: Exposure to ALS-CSF caused morphological changes of NSC-34 cells like reduced differentiation and aggregation of phosphorylated neurofilaments. Enhanced LDH activity and reduced ChAT immunoreactivity were also observed. Addition of VEGF to NSC-34 cells exposed to ALS-CSF was protective in terms of reduced LDH activity and restoration of ChAT expression. Conclusion: The present study confirms that VEGF exerts a neuroprotective effect on the NSC-34 cell line by attenuating the degenerative changes induced by ALS-CSF. It thus has therapeutic potential in sporadic ALS.
Read full abstract