Physiological aging causes motor function decline and anatomical and biochemical changes in the motor cortex. We confirmed that middle-aged mice at 15–18 months old show motor function decline, which can be restored to the young adult level by supplementing with mitochondrial electron transporter coenzyme Q10 (CoQ10) as a water-soluble nanoformula by drinking water for 1 week. CoQ10 supplementation concurrently improved brain mitochondrial respiration but not muscle strength. Notably, we identified an age-related decline in field excitatory postsynaptic potential (fEPSP) amplitude in the pathway from layers II/III to V of the primary motor area of middle-aged mice, which was restored to the young adult level by supplementing with CoQ10 for 1 week but not by administering CoQ10 acutely to brain slices. Interestingly, CoQ10 with high-frequency stimulation induced NMDA receptor-dependent long-term potentiation (LTP) in layer V of the primary motor cortex of middle-aged mice. Importantly, the fEPSP amplitude showed a larger input‒output relationship after CoQ10-dependent LTP expression. These data suggest that CoQ10 restores the motor function of middle-aged mice by improving brain mitochondrial function and the basal fEPSP level of the motor cortex, potentially by enhancing synaptic plasticity efficacy. Thus, CoQ10 supplementation may ameliorate the age-related decline in motor function in humans.
Read full abstract