The musculoskeletal system can move in more ways than are strictly necessary, allowing many tasks to be accomplished with a variety of limb configurations. Why some configurations are preferred has been a focus of motor control research, but most studies have focused on shoulder-elbow or whole arm movements. This study focuses on movements involving forearm pronation-supination (PS), wrist flexion-extension (FE), and wrist radial-ulnar deviation (RUD) and elucidates how these three degrees of freedom (DOF) combine to perform the common task of pointing, which only requires two DOF. Although pointing is more sensitive to FE and RUD than to PS and could be easily accomplished with FE and RUD alone, subjects tend to involve a small amount of PS. However, why we choose this behavior has been unknown and is the focus of this paper. With the use of a second-order model with lumped parameters, we tested a number of plausible control strategies involving minimization of work, potential energy, torque, and path length. None of these control schemes robustly predicted the observed behavior. However, an alternative control scheme, hypothesized to control the DOF that were most important to the task (FE and RUD) and ignore the less important DOF (PS), matched the observed behavior well. In particular, the behavior observed in PS appears to be a mechanical side effect caused by unopposed interaction torques. We conclude that moderately sized pointing movements involving the wrist and forearm are controlled by ignoring forearm rotation even though this strategy does not robustly minimize work, potential energy, torque, or path length. NEW & NOTEWORTHY Many activities require us to point our hands in a given direction using wrist and forearm rotations. Although there are infinitely many ways to do this, we tend to follow a stereotyped pattern. Why we choose this pattern has been unknown and is the focus of this paper. After testing a variety of hypotheses, we conclude that the pattern results from a simplifying strategy in which we focus on wrist rotations and ignore forearm rotation.
Read full abstract