IntroductionIn persons with multiple sclerosis, nerve conductivity can be reduced. The assessment is generally performed via motor evoked potentials (MEP). So far, a strongly associated motor performance surrogate for changes in the extracted central motor conduction time (CMCT) is missing.MethodsCMCT and performance in the nine-hole peg test and maximum thumb tapping frequencies over 10 s of 12 persons with multiple sclerosis were measured prior to and after training over 5 consecutive days. Each training consisted of 10,000 thumb taps at maximum effort with the dominant upper limb.ResultsThe dominant upper limb improved in maximum tapping frequency over 10 s (d = 0.79) and 10,000 taps (d = 1.04), the nine-hole peg test (d = 0.60), and CMCT (d = 0.52). The nondominant upper limb only improved in the nine-hole peg test (d = 0.38). Models of multiple linear regression predicted 0.78 (model 1, tapping performance as factors) and 0.87 (model 2, patient baseline characteristics as factors) of the variance in CMCT changes.DiscussionChanges in CMCT were well predictable, although the assessment of those surrogates is either not economic (model 1) or rather describing a potential of change (model 2). However, we were able to show moderate changes in CMCT within 5 days.