Activity patterns were recorded from 51 motoneurons in the fifth lumbar ventral root of cats walking on a motorized treadmill at a range of speeds between 0.1 and 1.3 m/s. The muscle of destination of recorded motoneurons was identified by spike-triggered averaging of EMG recordings from each of the anterior thigh muscles. Forty-three motoneurons projected to one of the quadriceps (vastus medialis, vastus lateralis, vastus intermedius, or rectus femoris) or sartorius (anterior or medial) muscles of the anterior thigh. Anterior thigh motoneurons always discharged a single burst of action potentials per step cycle, even in multifunctional muscles (e.g., sartorius anterior) that exhibited more than one burst of EMG activity per step cycle. The instantaneous firing rates of most motoneurons were lowest upon recruitment and increased progressively during a burst, as long as the EMG was still increasing. Firing rates peaked midway through each burst and tended to decline toward the end of the burst. The initial, mean, and peak firing rates of single motoneurons typically increased for faster walking speeds. At any given walking speed, early recruited motoneurons typically reached higher firing rates than late recruited motoneurons. In contrast to decerebrated cats, initial doublets at the beginning of bursts were seen only rarely. In the 4/51 motoneurons that showed initial doublets, both the instantaneous frequency of the doublet and the probability of starting a burst with a doublet decreased for faster walking speeds. The modulations in firing rate of every motoneuron were found to be closely correlated to the smoothed electromyogram of its target muscle. For 32 identified motoneurons, the unit's instantaneous frequencygram was scaled linearly by computer to the rectified smoothed EMG recorded from each of the anterior thigh muscles. The covariance between unitary frequencygram and muscle EMG was computed for each muscle. Typically, the EMG profile of the target muscle accounted for 0.88-0.96 of the variance in unitary firing rate. The EMG profiles of the other anterior thigh muscles, when tested in the same way, usually accounted only for a significantly smaller fraction of the variance. Brief amplitude fluctuations observed in the EMG envelopes were usually also reflected in the individual motoneuron frequencygrams. To further demonstrate the relationship between unitary frequencygrams and EMG, EMG envelopes recorded during walking were used as templates to generate depolarizing currents that were applied intracellularly to lumbar motoneurons in an acute spinal preparation.(ABSTRACT TRUNCATED AT 400 WORDS)
Read full abstract