Large-scale motions (LSMs) in wall-bounded turbulent flows have well-characterised instantaneous structural features (Kovasznay et al., J. Fluid Mech., vol. 41 (2), 1970, pp. 283–325; Meinhart & Adrian, Phys. Fluids, vol. 7 (4), 1995, pp. 694–696) and a known spectral signature (Monty et al., J. Fluid Mech., vol. 632, 2009, pp. 431–442). This work aims to connect these previous observations through the development and analysis of a representative model for LSMs. The model is constructed to be consistent with the streamwise energy spectrum (Monty et al. 2009) and amplification characteristics of the Navier–Stokes equations (McKeon & Sharma, J. Fluid Mech., vol. 658, 2010, pp. 336–382), and is found to naturally recreate characteristics of instantaneous turbulent structures, including a bulge shape (Kovasznay et al. 1970) and the presence of uniform momentum zones (Meinhart & Adrian 1995) in the streamwise velocity field. The observed structural similarity between the LSM representative model and instantaneous experimental data supports the use of travelling wave models to connect statistical and instantaneous descriptions of coherent structures, and clarifies a simple general equivalency between symmetry in a Reynolds-decomposed velocity field and asymmetry in the laboratory frame.