Backbone rigidity of conjugated polymers is suggested to play an essential role in realizing high-mobility transistors through the efficient interconnection of crystalline domains by tie molecules as discussed for the recently-developed donor-acceptor (DA)-type copolymers. However, no studies have directly observed interdomain hopping in these DA copolymers. Here, highly-efficient interdomain charge transport is observed in two typical high-mobility DA copolymers from the microscopic observation of charge carriers using field-induced electron spin resonance (ESR) spectroscopy. The in-plane ESR signal exhibits a clear motional narrowing effect associated with the carrier motion across the boundaries. The activation energy of the interdomain charge motion is as low as that of intradomain motion (~10 meV), both of which are clearly lower than those observed in the conventional semicrystalline polymer. The structural origin of this efficient interdomain electrical connection is the rigid, nearly torsion-free backbone conformation of the tie molecule, as demonstrated from density functional theory calculations.
Read full abstract