Flexor digitorum profundus (FDP) tendon injury is common in hand trauma, and flexor tendon reconstruction is one of the most challenging procedures in hand surgery because of severe adhesion that exceeds 25% and hinders hand function. The surface properties of a graft from extrasynovial tendons are inferior to those of the native intrasynovial FDP tendons, which has been reported as one of the major causations. Improved surface gliding ability of the extrasynovial graft is needed. Thus, this study used carbodiimide-derivatized synovial fluid and gelatin (cd-SF-gel) to modify the surface of the graft, thus improving functional outcomes using a dog in vivo model. Forty FDP tendons from the second and fifth digits of 20 adult women underwent reconstruction with a peroneus longus (PL) autograft after creation of a tendon repair failure model for 6 weeks. Graft tendons were either coated with cd-SF-gel ( n = 20) or not. Animals were euthanized 24 weeks after reconstruction, and digits were collected after the animals were euthanized for biomechanical and histologic analyses. Adhesion score (cd-SF-gel, 3.15 ± 1.53; control, 5 ± 1.26; P < 0.00017), normalized work of flexion (cd-SF-gel, 0.47 ± 0.28 N-mm/degree; control, 1.4 ± 1.45 N-mm/degree; P < 0.014), and distal interphalangeal joint motion (cd-SF-gel, 17.63 ± 6.77 degrees; control, 7.07 ± 12.99 degrees; P < 0.0015) in treated grafts all showed significant differences compared with nontreated grafts. However, there was no significant difference in repair conjunction strength between the two groups. Autograft tendon surface modification with cd-SF-gel improves tendon gliding ability, reduces adhesion formation, and enhances digit function without interfering with graft-host healing. The authors demonstrate a clinically relevant and translational technology by using the patient's own synovial fluid to "synovialize" an autologous extrasynovial tendon graft to improve functional outcomes following flexor tendon reconstruction.
Read full abstract