Neurodevelopmental disorders are on the rise, yet their average diagnosis is after 4.5 years old. This delay is partly due to reliance on social-communication criteria, which require longer maturation than scaffolding elements of neuromotor control. Much earlier criteria could include reflexes, monitoring of the quality of spontaneous movements from central pattern generators and maturation of intentional movements and their overall sensation. General Movement Assessment (GMA) studies these features using observational means, but the last two decades have seen a surge in digital tools that enable non-invasive, continuous tracking of infants' spontaneous movements. Despite their importance, these tools are not yet broadly used. In this work, using CiteSpace, VOSViewer and SciMAT software, we investigate the evolution of the literature on GMA and the methods in use today, to estimate how digital techniques are being adopted. To that end, we created maps of key word co-occurrence networks, co-author networks, document co-citation analysis and strategic diagrams of 295 publications based on a search in the Web of Science, Dimensions and SCOPUS databases for: 'general movement assessment' OR 'general movements assessment'. The nodes on the maps were categorized by size, cluster groups and year of publication. We found that the state-of-the-art methodology to diagnose neurodevelopmental disorders still relies heavily on observation. Several groups in classical GMA research have branched out to incorporate new techniques, but few groups have adopted digital means. We report on additional analyses of methods and biosensors usage and propose that combining traditional clinical observation criteria with digital means may allow earlier diagnoses and interventional therapies for infants.
Read full abstract