BackgroundHead motion during brain positron emission tomography (PET)/computed tomography (CT) imaging degrades image quality, resulting in reduced reading accuracy. We evaluated the performance of a head motion correction algorithm using 18F-flutemetamol (FMM) brain PET/CT images.MethodsFMM brain PET/CT images were retrospectively included, and PET images were reconstructed using a motion correction algorithm: (1) motion estimation through 3D time-domain signal analysis, signal smoothing, and calculation of motion-free intervals using a Merging Adjacent Clustering method; (2) estimation of 3D motion transformations using the Summing Tree Structural algorithm; and (3) calculation of the final motion-corrected images using the 3D motion transformations during the iterative reconstruction process. All conventional and motion-corrected PET images were visually reviewed by two readers. Image quality was evaluated using a 3-point scale, and the presence of amyloid deposition was interpreted as negative, positive, or equivocal. For quantitative analysis, we calculated the uptake ratio (UR) of 5 specific brain regions, with the cerebellar cortex as a reference region. The results of the conventional and motion-corrected PET images were statistically compared.ResultsIn total, 108 sets of FMM brain PET images from 108 patients (34 men and 74 women; median age, 78 years) were included. After motion correction, image quality significantly improved (p < 0.001), and there were no images of poor quality. In the visual analysis of amyloid deposition, higher interobserver agreements were observed in motion-corrected PET images for all specific regions. In the quantitative analysis, the UR difference between the conventional and motion-corrected PET images was significantly higher in the group with head motion than in the group without head motion (p = 0.016).ConclusionsThe motion correction algorithm provided better image quality and higher interobserver agreement. Therefore, we suggest that this algorithm be adopted as a routine post-processing protocol in amyloid brain PET/CT imaging and applied to brain PET scans with other radiotracers.
Read full abstract