The content of 39 metals and metalloids (MMs) in submicron road dust (PM1 fraction) was studied in the traffic zone, residential courtyards with parking lots, and on pedestrian roads in parks in Moscow. The geochemical profiles of PM1 vary slightly between different types of roads and courtyards but differ significantly from those in parks. In Moscow, compared to other cities worldwide, submicron road dust contains less As, Sb, Mo, Cr, Cd, Sn, Tl, Ca, Rb, La, Y, U, but more Cu, Zn, Co, Fe, Mn, Ti, Zr, Al, V. Relative to the upper continental crust, PM1 is highly enriched in Sb, Zn, Cd, Cu, W, Sn, Bi, Mo, Pb. In the courtyards, where contact between pollutants and the population is most frequent and occurs over an extended period, the level of PM1 pollution with MMs (from strong to extreme) is comparable to that on large roads. Source identification was conducted using correlations, elemental ratios, and absolute principal component analysis with multiple linear regression (APCA-MLR). In the traffic zone, non-exhaust and exhaust vehicle emissions contribute significantly to the MM concentrations in PM1 (especially for Bi, Sb, Sn, V, Fe, Cu, W, Mo); soil particles, abrasion of steel surfaces, industrial emissions, tire and road wear with carbonate dust resuspension contribute less. In the courtyards, the contribution of the road wear with carbonate dust resuspension and soil particles increases by up to 16% due to the poor condition of the road surface, frequent construction works, and large contact areas of roads with soils. In parks, the contribution of anthropogenic sources sharply decreases by 20-48% due to the increased soil resuspension rate. The spatial distribution pattern of MMs in submicron road dust should aid in the development of more effective road surface washing strategies, ultimately minimizing the risk to public health.
Read full abstract