Here, we consider the Ourika and Rheraia drainage basins on the Tizi N'Test Fault zone in the mountains of the Marrakech High Atlas (western Morocco) with regard to Late Pleistocene tectonic activity. New insights into geomorphological changes in drainage patterns and related landforms are based on geological fieldwork in conjunction with DEM analysis. Lithological and structural data combined with certain geomorphometric indices provide clues to the ongoing uplift of Quarternary surfaces in this region. Five geomorphological indices are utilized: 1) drainage network, 2) shape of stream long profiles, 3) hypsometric integral and curves, 4) valley-floor width valley-height ratio (Vf index), and 5) stream gradient index (SL index). We also considered the temporal evolution of alluvial-deposit complexes with diverse lithofacies, such as debris flows, channel gravels, rockslide-debris avalanche, stratified slope deposits, terrace gravels, and fan deposits in the Ourika and Rheraia valleys. Pleistocene talus deposits and fluvial sediments are offset by the Tizi N'Test Fault in the Upper Ourika and Upper Rheraia valleys. Such deformation of thick, continental deposits strongly points to thrust reactivation along the Tizi N'Test Fault. We define the chronology and overall aggradation phases, or lateral incision phases, showing how they are the consequences of variations in tectonic uplift and climate. As a result, we are better able to access recent morphotectonic evolution in part of the Marrakech High Atlas.
Read full abstract