An increasing number of seismological studies indicate that slabs of subducted lithosphere penetrate the Earth's lower mantle below some island arcs but are deflected, or, rather, laid down, in the transition zone below others. Recent numerical simulations of mantle flow also advocate a hybrid form of mantle convection, with intermittent layering. We present a multi-disciplinary analysis of slab morphology and mantle dynamics in which we account explicitly for the history of subduction below specific island arcs in an attempt to understand what controls lateral variations in slab morphology and penetration depth. Central in our discussion are the Izu-Bonin and Mariana subduction zones. We argue that the differences in the tectonic evolution of these subduction zones—in particular the amount and rate of trench migration—can explain why the slab of subducted oceanic lithosphere seems to be (at least temporarily) stagnant in the Earth's transition zone below the Izu-Bonin arc but penetrates into the lower mantle below the Mariana arc. We briefly speculate on the applicability of our model of the temporal and spatial evolution of slab morphology to other subduction zones. Although further investigation is necessary, our tentative model shows the potential for interpreting seismic images of slab structure by accounting for the plate-tectonic history of the subduction zones involved. We therefore hope that the ideas outlined here will stimulate and direct new research initiatives.
Read full abstract