Polypropylene and ammonium phosphate (AP) composites were synthesized at a 25 wt% concentration. The changes in the morphological, thermal, and physical behavior of the composites were analyzed with the addition of lignosulfonate (LG) and zirconium phosphate (ZrP). Additionally, metallic zirconium was deposited onto lignosulfonate using the magnetron sputtering technique to develop polypropylene and zirconium-modified lignosulfonate (LGMod) composites. Thus, composites of PP/25AP, PP/25AP/8LG/5ZrP, and PP/25AP/8LGMod were synthesized. The synthesis involved mixing the materials in a Hake mixer, followed by compression molding. The composites were characterized by field emission scanning electron microscopy (SEM-EDS), a thermogravimetric analysis (TGA) with combustion parameters, a vertical burn test (UL-94), a thermal camera, and mechanical properties. All composites achieved a V2 rating according to UL-94 standards. The PP/25AP extinguishes flames more quickly compared to other materials, approximately 99.2% faster than PP and showed the lowest temperature variation and mass loss after burning. The PP/25AP/8LG/5ZrP composite exhibited a 7% higher rigidity and 84.5% better flame retardancy compared to pure PP. Additionally, substituting ZrP with LGMod led to a lower environmental impact and improved thermal properties, despite some mechanical disadvantages.
Read full abstract