Nanocomposite, which comprise organic and inorganic materials have gained increasing interest in the application for enhanced sensing response to both reducing and oxidation gases. In this study, a nanocomposite is chemical polymerization synthesized by reinforcing Ag nanoparticles with different concentration doped into the matrix of Polypyrrole (PPy). This nanocomposite is used as a sensing platform for ammonia detection with different concentration (ppm). The homogeneous distribution of Ag nanoparticles onto the PPy matrix provides a smooth and dense surface area, further accelerating the transmission of electrons. The synergistic effect of PPy@Ag matrix is responsible for the outstanding conductivity, compatibility and catalytic power of the proposed gas sensor. The structure, morphology, and surface composition of as-synthesized samples were respectively, examined via X-ray diffraction, field emission scanning electron microscopy, Ultraviolet-visible spectroscopy, Thermogravimetric analysis and Fourier transform infrared spectroscopy. The results indicated that sensor based on the PPy@Ag5 (2 gm) nanocomposite showed the highest response toward ammonia as compare to pure PPy at room temperature with a response value is 58 % to 100 ppm. Overall, the obtained findings demonstrated that the PPy@Ag nanocomposite are promising materials for gas sensing applications in environmental monitoring.
Read full abstract