Abstract Porcine parvovirus (PPV) is a significant causative agent of porcine reproductive failure, causing serious economic losses in the swine industry. PPV is a nonenveloped virus, and its capsid is assembled from three viral proteins (VP1, VP2, and VP3). The major capsid protein, VP2, is the main target for PPV neutralizing antibodies and vaccine development. In this study, PPV-VP2 protein was expressed in silkworm larvae, and its antigenicity and production were compared with those in B. mori cells (Bm5). The recombinant VP2 protein was expressed successfully in silkworm larvae and Bm5 cells with a size of approximately 64 kDa. The formation of virus-like particles (VLPs) by recombinant PPV-VP2 was confirmed through transmission electron microscopy. The recombinant PPV-VP2 protein assembled into spherical particles with diameters ranging from 20 to 22 nm. The antigenicity of PPV-VLPs was comparatively analyzed between Bm5 cells and silkworm larvae by ELISA, hemagglutination and hemagglutination inhibition assays. Consequently, it was confirmed that the PPV-VLPs produced in the silkworm larvae were more antigenic than VLPs produced in Bm5 cells. Therefore, it is expected that economical and effective vaccine development will be possible by mass production of PPV-VLPs in silkworm larvae.