Background and Objectives: Non-alcoholic fatty liver disease (NAFLD) is associated with obesity and ranges from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. Accumulating evidence in animal models suggests that loss of interleukin-10 (IL-10) anti-inflammatory actions might contribute to lobular inflammation, considered one of the first steps toward NASH development. However, the role of IL-10 in lobular inflammation remains poorly explored in humans. We examined mRNA and protein levels of IL-10 in liver biopsies and serum samples from morbidly obese patients, investigating the relationship between IL-10 and lobular inflammation degree. Materials and Methods: We prospectively enrolled morbidly obese patients of both sexes, assessing the lobular inflammation grade by the Brunt scoring system to categorize participants into mild (n = 7), moderate (n = 19), or severe (n = 13) lobular inflammation groups. We quantified the hepatic mRNA expression of IL-10 by quantitative polymerase chain reaction and protein IL-10 levels in liver and serum samples by Luminex Assay. We estimated statistical differences by one-way analysis of variance (ANOVA) and Tukey's multiple comparison test. Results: The hepatic expression of IL-10 significantly diminished in patients with severe lobular inflammation compared with the moderate lobular inflammation group (p = 0.01). The hepatic IL-10 protein levels decreased in patients with moderate or severe lobular inflammation compared with the mild lobular inflammation group (p = 0.008 and p = 0.0008, respectively). In circulation, IL-10 also significantly decreased in subjects with moderate or severe lobular inflammation compared with the mild lobular inflammation group (p = 0.005 and p < 0.0001, respectively). Conclusions: In liver biopsies and serum samples of morbidly obese patients, the protein levels of IL-10 progressively decrease as lobular inflammation increases, supporting the hypothesis that lobular inflammation develops because of the loss of the IL-10-mediated anti-inflammatory counterbalance.